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Abstract. Source imaging maps back boundary measurements to underlying

generators within the domain; e.g., retrieving the parameters of the generating

dipoles from electrical potential measurements on the scalp such as in electroen-
cephalography (EEG). Fitting such a parametric source model is non-linear in

the positions of the sources and renewed interest in mathematical imaging has

led to several promising approaches.
One important step in these methods is the application of a sensing princi-

ple that links the boundary measurements to volumetric information about the

sources. This principle is based on the divergence theorem and a mathematical
test function that needs to be an homogeneous solution of the governing equa-

tions (i.e., Poisson’s equation). For a specific choice of the test function, we

have devised an algebraic non-iterative source localization technique for which
we have coined the term “analytic sensing”.

Until now, this sensing principle has been applied to homogeneous-conductivity

spherical models only. Here, we extend it for multi-layer spherical models that
are commonly applied in EEG. We obtain a closed-form expression for the test

function that can then be applied for subsequent localization. A simulation
study show the feasibility of the proposed approach.

1. Introduction. Source imaging from boundary Cauchy data satisfying Poisson’s
equation is a classical inverse problem that is of high interest to many fields in
engineering. In its most general setting, the problem is known to be ill-posed and
additional assumptions about the source configuration need to be made to render
the solution unique. Typically, one can restrict the class of source distributions by
imposing spatial smoothness properties (e.g., Tikhonov regularization [37]) or by
assuming a parametric source model.

Parametric source models are most useful when the source configurations are
expected to be “well localized”. This situation applies to some applications in elec-
troencephalography (EEG). For example, focal brain activity that can be modeled
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as a superposition of a limited number of dipoles is often observed in averaged
evoked potentials or in some cases of epileptic activity [27, 26].

Almost any source imaging technique performs (least-squares) data fitting by
relying on the forward model, computing the boundary data for a given source
configuration, and by iteratively updating the sources’ parameters as part of an
optimization process [28, 17]. However, the corresponding cost function has many
local minima which makes the solution dependent on the initial guess, especially
for multiple dipoles. Several toolboxes, commercial and non-commerical, such as
EEGLAB (http://sccn.ucsd.edu/eeglab) and BESA (http://http://www.besa.de)
do implement such localization methods. Therefore, successful recovery of the para-
metric sources is often limited to single-dipole models. Moreover, such methods are
tedious and computationally intensive. As a consequence, methods based on neural
networks have emerged [35]. Another family of source localization algorithms are
the so-called subspace source localization methods; e.g., MUSIC [32, 30]. These
methods rely heavily upon statistical tools such as principal component analysis,
which are based on the estimation of second [6] or higher [10] order statistics.

On the other side, methods have also been proposed for underdetermined source
distributions, including proper regularization; examples include beamforming ap-
proaches [36, 9] and Bayesian estimation techniques [41, 33].

The existence and uniqueness of multi-dipole models has been studied exten-
sively [19], but there is a still a need for practical methods, especially for the
non-linear fitting of the localization parameters. In particular, there is a renewed
interest from the mathematical imaging community in providing new approaches
based on non-linear methods. For example, Baratchart et al. proposed to solve the
inverse problem analytically by so-called “best meromorphic approximation” [8, 7].
However, its extension to 3D requires going through many 2D localizations. Based
on the divergence theorem, the sensing principle was introduced to relate the 3D
boundary measurements to volumetric information on the sources [2, 3, 14, 31]; i.e.,
an auxiliary mathematical test function (“analytic sensor”) needs to be an homo-
geneous solution of the governing equation of the physical system. In the case of
homogeneous conductivity, the governing equation reduces to the Laplace equation
and any polynomial in (x+ iy) and (x− iy) is analytical and thus can be used for
the sensing principle. In recent work [21], we put forward the “analytic sensing”
framework that exploits the same concept, but with a specific choice of analytic
sensors. This choice allows to subsequently deploy the principle of the annihilating
filter, similar to the “finite rate of innovation” approach [11, 40], which renders the
dipoles’ positions in a non-iterative way. The reconstruction of the dipoles’ moments
reverts to solving a linear system of equations once the dipoles’ positions are known.
Although this algorithm has the advantages of decoupling the estimation of posi-
tion and moment parameters, it assumes a spherical and homogeneous conductivity
model. In many applications, including EEG, spherical multi-layer conductivity
models are more useful [34, 29, 13, 4]. Moreover, the changes in conductivity of the
outer layers can highly impact the localization error [39, 5]. Therefore, the assump-
tion of homogeneity hinders the practical use of the original approach of analytic
sensing.

There are basically two ways to overcome the limitations imposed by the homo-
geneous conductivity model:

• We propagate the measured boundary potential inward, that is, down to the
boundary of the inner compartment [12, 1]. Although this propagation takes



ANALYTIC SENSING FOR MULTI-LAYER SPHERICAL MODELS 3

into account the inhomogeneity of the conductivity model, it propagates the
measurements corrupted with noise that will be amplified.

• We construct new analytic sensors that propagate to the outer boundary of
the conductivity model. The propagation of the analytic sensor could be done
numerically [24, 25], which has the advantage that it can cope with realistic
head models. However, since the analytic sensor is known analytically to
start with, we propose in this work to derive a closed-form expression of the
propagated sensor, a method that does not introduce any approximation errors
and leads to a fast and efficient algorithm.

We briefly revisit the sensing principle and then construct new analytic test func-
tions that account for multi-layer spherical models with radially varying conductiv-
ity profiles, in particular, piecewise constant conductivities. Constructing such test
functions boils down to solving a set of 3D differential equations that express the
physical constraints of the conductivity model. We show how these equations can
be solved using a particular separation of variables, hence, creating a new set of
analytic sensors that account for layers of different constant conductivity. Finally,
we show explicitly how to construct analytic sensors for the 3-sphere model with
experimental results.

2. Analytic sensing revisited.

2.1. Setup. Let us consider a 3D closed conductor Ω with boundary ∂Ω and a
source distribution ρ in Ω. The source distribution induces an electrical potential
V such that [16]:

div(σ∇V ) = ρ, within Ω (1)

∇V · eΩ = 0, on ∂Ω. (2)

where σ expresses the conductivity profile of Ω and eΩ is the outward normal to
∂Ω. When σ is constant, (1) is equivalent to Laplace’s equation.

Many physical problems can be modeled using (1), in particular electrostatic
problems. In this paper, we assume that σ(r) is a piecewise constant function of

r =
√
x2 + y2 + z2 (whereas we will denote the spatial position as x = [x, y, z]T ),

in particular, the N -sphere head model as depicted in Fig. 1. The inverse problem
at hand is to estimate ρ knowing σ and the boundary potential V

∣∣
∂Ω

.

2.2. Sensing the source distribution. The sensing principle takes advantage of
the divergence theorem to compute the scalar products 〈ψ, ρ〉, knowing only V

∣∣
∂Ω

.
These scalar products can be seen as “generalized measures” of the unknown source
distribution and are computed using the following boundary integral:

〈ψ, ρ〉 = −
∮
∂Ω

σV∇ψ · eΩds. (3)

These analytic sensors ψ need to satisfy the key property

div(σ∇ψ) = 0, within Ω, (4)

which ensures that the generalized measures can be computed as stated in (3).
These analytic sensors allow sampling the boundary potential in a well-chosen

way; i.e., each analytic sensor leads to a “generalized measure”. Ideally, we would
like a measurement device that behaves equivalently to integration with the analytic
sensor, but in the absence of such instrumentation, we perform the integration based
on regular boundary measurements.
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Figure 1. (a) Three-sphere conductivity model where each com-
partment, Ωi, has its own conductivity, σi, for i ∈ {1, · · · , 3}.
(b) Corresponding conductivity profile as a function of r (which
is in this case a piecewise constant). Each discontinuity represents
a boundary ∂Ω1, ∂Ω2 or ∂Ω3.

Until now, the sensing principle was applied to a conductivity model that is
homogeneous; i.e., σ is constant and (4) reverts to the Laplace equation, ∆ψ = 0,
which is satisfied by functions of the variable ζ = x + iy that are analytical inside
Ω. In this paper, we extend the sensing principle such that it can cope with a
N -sphere conductivity model; i.e., given the desirable form of the analytic sensor
in the compartment where the sources are located, we derive how to analytically
propagate the test function to the boundary according to (4).

2.3. Non-linear estimation for source localization. In general, when no con-
straints on the source distribution ρ are imposed, reconstructing ρ from V

∣∣
∂Ω

is an
ill-posed problem; i.e., many source distributions can generate the same measured
boundary potenial [18]. Here we assume a parametric source model that consists of
a limited number of current dipoles:

ρ(x) =

M∑
m=1

pm · ∇δ(x− xm), (5)

where xm = [xm, ym, zm]T are the source positions and pm = [px,m, py,m, pz,m]T

are the moments. We further assume that all sources lie in the inner compart-
ment of the head model where σ = constant (e.g., as depicted in figure 1). The
source model (5) assures the identifiability and uniqueness of ρ when the boundary
potential is known [19].

To apply previously proposed methods that rely on the sensing principle, it is
sufficient to use the desired analytic sensor in the inner compartment, but the sensor
needs to be propagated to the boundary to obtain the proper generalized measures.
In [14], the analytic sensors were chosen to be polynomials of (x+ iy) and (x− iy),
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in particular,

ψn(x, y) =

K∑
k=1

ck(x+ iy)k + c′k(x− iy)k. (6)

Probing with different polynomial analytical sensors then allows to determine the
unknowns, but one issue with these sensors is that they become rapidly numerically
unstable as K grows. That is, for high values of K such polynomials require a
computation accuracy exceeding that of usual scientific software (i.e., too large nu-
merical dynamic range), which makes the numerical computation of (3) inaccurate.

Another approach is to revert to test functions that have a singularity, a, outside
the head model, and consequently come with a certain amount of localization. This
can be exploited for the application, e.g., to improve the sensitivity to “nearby”
sources. In particular, in [21], we proposed the analytic sensor for point sources

ψan(x+ iy) =
1

x+ iy − an
for x+ iy ∈ Ω1, (7)

with an = α exp(inθ) a singularity outside the head model, α > r3, and n =
0, . . . , N − 1. As the singularity gets closer to the head, these sensors tend to
be more localized, but also tend to be more sensitive to noise [21, Section 3.3].

In the case of current dipoles as stated in (5), the sensor is modified to

ψan = log
(
1− (x+ iy)/an

)
for x+ iy ∈ Ω1, (8)

to preserve the special structure of the generalized measures, i.e., a fraction whose
denominator is a polynomial whose roots are 2D projections of the dipoles’ locations,
as shown in (9). Note that these sensors satisfy (4) as well. When applying these
sensors to reconstruct the source model (5) the corresponding generalized measures
read

〈ψan , ρ〉 = −
M∑
m=1

px,m + ipy,m
xm + iym − an

=

∑M−1
m=0 cme

imnθ

M∏
m=1

(xm + iym − an)︸ ︷︷ ︸
R(an)

, (9)

with cm some coefficient obtained by expressing 〈ψan , ρ〉 as a fraction with one
common denominator. So the denominator is a polynomial R whose roots are
xm + iym, the 2-D projection of xm on the complex plane. These generalized
measures depend non-linearly on the source positions xm + iym. Nevertheless,
using an annihilation-filter approach, it is possible to retrieve the coefficients of the
polynomial R and the positions xm, ym as its roots. The key to this solution is that
the numerator of (9) is a sum of complex exponentials which can be annihilated by

a known filter h, specified by the transfer function H(z) =
∏M−1
k=0

(
1− eikαz−1

)
, as

proven in [21]. Consequently, we have

h ∗ (〈ψan , ρ〉R(an)) = 0, n = 0, . . . , N − 1

which turns out to be a linear system of equations in the unknown coefficients of
R. Finally, the generalized samples depend linearly on px,m + ipy,m and can be
easily retrieved from the generalized samples once the positions are known. With
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as few as N = 2M (complex-valued) measurements 〈ψan , ρ〉 we can retrieve the
(x, y) positions of M sources.

To retrieve the z-components of the locations and moments we could introduce
a second set of test-functions zψan . The corresponding generalized samples depend
linearly on z and pz,m and are thus retrieved by solving

〈zψan , ρ〉 =

M∑
m=1

−zm(px,m + ipy,m)

(xm + iym − an)
− pz,m log

(
1− (xm + iym)/an

)
,

for zm and pz,m. The mathematical and computational details of the method can
be found in [21].

In this paper, we show how to propagate the test function through the multi-layer
spherical model given its desired form in the inner compartment where the sources
are located.

3. Extending the sensing principle for spherical head models.

3.1. Particular solutions of the continuity equation with radial conduc-
tivity. The desired form of the analytic sensor in the inner compartment Ω1, where
the sources are located, is a desired function of ζ that allows to retrieve the sources
subsequently. We will show that, because σ varies radially, a separation of variables
in ζ and r reduces (4) to solving two decoupled differential equations.

Lemma 1. If we assume that σ is C1 in some ring, then all analytic sensors ψ that
satisfy

div(σ∇ψ) = 0

in that ring, and that can be put under the separable form

ψ(x, y, z) = ψ0(ζ)ψ1(r),

where ζ = x+ iy and r =
√
x2 + y2 + z2, are solutions of the differential equations:

ζψ′0(ζ)− nψ0(ζ) = 0, (10)

rψ′′1 (r) +

(
2(n+ 1) +

rσ′

σ

)
ψ′1(r) + n

σ′

σ
ψ1(r) = 0, (11)

where n is some scalar.

Proof. We look for a special solution taking the separable form:

ψ(x, y, z) = ψ0(ζ)ψ1(r),

with ζ = x+ iy and ∆ψ0 = 0.
Then, (4) takes the form:

σ′uTr ∇ψ + σ∆ψ = 0, (12)

where ur is the vector defined as

ur =
1

r

 x
y
z

T

.

The first term of (12) can be further rewritten as:

uTr ∇ψ = ψ1u
T
r ∇ψ0u

T
r ∇ψ1

= ψ1(r)ψ′0(ζ)
ζ

r
+ ψ0(ζ)ψ′1(r),
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and second term as:

∆ψ = ψ0(ζ)∆ψ1(r) + 2∇ψ0(ζ)T∇ψ1(r) + ψ1∆ψ0(ζ)

= ψ0(ζ)
rψ′′1 (r) + 2ψ′1(r)

r
+ 2ψ′0(ζ)ψ′1(r)

ζ

r
.

Consequently (12) becomes

σ′(r)ψ1(r)ψ′0(ζ)
ζ

r
+ σ′(r)ψ0(ζ)ψ′1(r)︸ ︷︷ ︸

σ′uT
r ∇ψ

+σ(r)ψ0(ζ)
rψ′′1 (r) + 2ψ′1(r)

r
+ 2σ(r)ψ′0(ζ)ψ′1(r)

ζ

r︸ ︷︷ ︸
σ∆ψ

= 0,

which can be separated into two parts, one that depends only on ζ, and another
that depends only on r:

ζψ′0(ζ)

ψ0(ζ)
= −rσ

′(r)ψ′1(r) + σ(r) (rψ′′1 (r) + 2ψ′1(r))

σ′(r)ψ1(r) + 2σ(r)ψ′1(r)
. (13)

The left-hand side (lhs) of (13) is a function of ζ whereas the right-hand side
(rhs) is a function of r. These variables are independent which implies that lhs =
rhs = Constant. This results into two decoupled differential equations:

ζψ′0(ζ)− nψ0(ζ) = 0,

rψ′′1 (r) +

(
2(n+ 1) +

rσ′

σ

)
ψ′1(r) + n

σ′

σ
ψ1(r) = 0,

which concludes the proof.

The solution of (10) is ψ0 = Constant× ζn which is discontinuous or multivalued
if n /∈ N. Hence we require n to be some positive integer. Thus, if ψ1 is a function
for which

rψ′′1 (r) +

(
2(n+ 1) +

rσ′

σ

)
ψ′1(r) + n

σ′

σ
ψ1(r) = 0, (14)

holds, then

ψ(x, y, z) = (x+ iy)nψ1(r), n ∈ N

is a valid test function.
Taking into account the N -sphere conductivity model, we have that in each

region with constant σ

ψ(x, y, z) = C(x+ iy)n + C ′
(x+ iy)n

r2n+1
,

with C and C ′ arbitrary constants. This means that, due to the linearity of the
operator div (σ∇·), any valid analytic sensor ψ, in a region where σ = Constant,
must be of the form

ψ(x, y, z) = ϕ(x+ iy) +
1

r
Φ

(
x+ iy

r2

)
,

where ϕ and Φ are analytic/holomorphic functions in that region. In order to fully
characterize the analytic sensors that go with an N -sphere conductivity model, we
need to describe the behavior (or rather change) of ψ at a boundary ∂Ωj = Ωj∩Ωj+1

between two homogenous media, Ωj and Ωj+1. Note that, contrary to the usual
practice, ∂Ωj does not include the lower boundary of Ωj at rj−1.
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Proposition 1. If we know ϕ and Φ in a ring Ωj =
{
x ∈ R3, s.t. rj−1 ≤ ‖x‖ ≤ rj

}
of an N -sphere (j = 1, 2, . . . N) conductivity model

ϕ = ϕj in Ωj
Φ = Φj in Ωj
σ = σj in Ωj

then we can propagate ϕj and Φj through ∂Ωj = Ωj ∩Ωj+1, by solving the following
two differential equations:

2ζ

r3
j

Φ′j+1

(
ζ

r2
j

)
+

1

rj
Φj+1

(
ζ

r2
j

)
= −gj(ζ) + ζf ′j(ζ), (15)

ϕj+1 = fj(ζ)− 1

rj
Φj+1

(
ζ

r2
j

)
, (16)

where

fj(ζ) = ϕj(ζ) +
1

rj
Φj

(
ζ

r2
j

)
, (17)

gj(ζ) =
σj
σj+1

(
ζϕ′j(ζ)− 1

rj
Φj

(
ζ

r2
j

)
− ζ

r3
j

Φ′j

(
ζ

r2
j

))
. (18)

Proof. Using standard arguments frequent in electromagnetic physics, or using dis-
tribution theory, it is possible to show that, if σ and ψ are piecewise C1 satisfying
div(σ∇ψ) = 0 separately in the interiors of Ωj and Ωj+1, then

ψ

σxT∇ψ

}
are continuous across ∂Ωj =⇒ div(σ∇ψ) = 0 in Ωj ∪ Ωj+1

• for the continuity of ψ at ∂Ωj

ϕj(ζ) +
1

rj
Φj

(
ζ

r2
j

)
= ϕj+1(ζ) +

1

rj
Φj+1

(
ζ

r2
j

)
; (19)

• for the continuity of σxT∇ψ at ∂Ωj

σj

(
ζϕ′j(ζ)− 1

rj
Φj

(
ζ

r2
j

)
− ζ

r3
j

Φ′j

(
ζ

r2
j

))
=

σj+1

(
ζϕ′j+1(ζ)− 1

rj
Φj+1

(
ζ

r2
j

)
− ζ

r3
j

Φ′j+1

(
ζ

r2
j

))
,

(20)

for any ζ such that ||ζ|| ≤ rj . These two differential equations, (19) and (20),
describe how a test function ψ changes (or rather propagates) through ∂Ωj . In
what follows we show how to find ϕj+1 and Φj+1 from ϕj and Φj . This describes
explicitly how the test function ψ propagates over a discontinuity of σ.

Let us define fj(ζ) and gj(ζ) to be:

fj(ζ) = ϕj(ζ) +
1

rj
Φj

(
ζ

r2
j

)
,

gj(ζ) =
σj
σj+1

(
ζϕ′j(ζ)− 1

rj
Φj

(
ζ

r2
j

)
− ζ

r3
j

Φ′j−1

(
ζ

r2
j

))
,
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then the equations (19) and (20) read:
ϕj+1(ζ) +

1

rj
Φj+1

(
ζ

r2
j

)
= fj(ζ),

ζϕ′j+1 −
1

rj
Φj+1

(
ζ

r2
j

)
− ζ

r3
j

Φ′j+1

(
ζ

r2
j

)
= gj(ζ).

(21)

By elimination of ϕj+1 in (21), we obtain an ordinary differential equation (ODE)
for Φj+1:

2ζ

r3
j

Φ′j+1

(
ζ

r2
j

)
+

1

rj
Φj+1

(
ζ

r2
j

)
= −gj(ζ) + ζf ′j(ζ).

Once the above ODE is solved, and thus Φj+1 is known, we can find ϕj+1 by solving
the first equation of (21) for ϕj+1:

ϕj+1 = fj(ζ)− 1

rj
Φj+1

(
ζ

r2
j

)
,

which concludes this proof.

So, if we choose ϕ1 and Φ1, we can construct ψ
∣∣
∂Ω

by (repeated) propagation of
ϕj and Φj through the boundaries ∂Ωj until we reach the outer boundary. Note
that the ODE that defines Φj+1 can be integrated exactly.

The ODE that defines Φj+1 can be integrated exactly when we propagate the
logarithmic function (8) from the deepest ring, Ω1 =

{
x ∈ R3, s.t. ‖x‖ ≤ r1

}
which contains the origin (0, 0, 0). However, this expression is quite complicated
and not very informative. A better alternative is to work directly with the power
series expansion of Φj and ϕj .

Proposition 2. Assume that, in the ring Ωj, the functions ϕj and Φj can be
expressed using the following power series expansion

ϕj(ζ) =
∑
k≥0

cj,kζ
k

Φj(ζ) =
∑
k≥0

dj,kζ
k

Then, the coefficients cj,k, dj,k satisfy a linear induction over the index j cj+1,k

dj+1,k

 =

 1− uj,k vj,kr
−2k−1
j

uj,kr
2k+1
j 1− vj,k

 cj,k

dj,k

 (22)

where

uj,k =
k

2k + 1

(
1− σj

σj+1

)
and vj,k =

k + 1

2k + 1

(
1− σj

σj+1

)
.

If the function ψ(ζ) is equal to log(1−ζ/an) in Ω1, we can initialize this induction
formula with

c1,k =

{
− 1
kakn

for k ≥ 1

0 otherwise
and d1,k = 0, ∀k ≥ 0
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Proof. Across ∂Ωj , the function ψ(ζ) = ϕj(ζ) + 1
rΦj

(
ζ
r2

)
is continuous as well as

σ∇ψ · e∂Ωj . Using the power series expression of ψ(ζ), we thus have∑
k≥0

cj,kζ
k +

∑
k≥0

dj,k

r2k+1
j

ζk =
∑
k≥0

cj+1,kζ
k +

∑
k≥0

dj+1,k

r2k+1
j

ζk

σj
∑
k≥0

kcj,kζ
k − σj

∑
k≥0

(k + 1)
dj,k

r2k+1
j

ζk = σj+1

∑
k≥0

kcj+1,kζ
k − σj+1

∑
k≥0

(k + 1)
dj+1,k

r2k+1
j

ζk

After identifying left and right coefficients of ζk we obtain two equations for each
k, which can be put under matrix form

1
1

r2k+1
j

kσj − (k + 1)σj

r2k+1
j


 cj,k

dj,k

 =


1

1

r2k+1
j

kσj+1 − (k + 1)σj+1

r2k+1
j


 cj+1,k

dj+1,k


After a few simple algebraic manipulations this is equivalent to (22). The appendices
show the construction of ψ3 and φ3, explicitly, using proposition 1. This may
considerably help the implementation.

4. A note on non-spherical mediums. In the case of a non-homogeneous medium,
we only need to assume that σ is constant within the potential support, Ω0, of ρ.
In EEG, for example, the generating sources lie in the grey matter for which the
conductivity does not vary. In that case, we may still choose the test functions to be
of the form log (1− (x+ iy)/a) in Ω0. Then the test functions can be propagated
to the boundary of the volume model in such a way as to satisfy div(σ∇ψ) = 0 us-
ing numerical techniques such as finite element methods [22] or boundary element
methods (for domains with piecewise constant σ) [23]. The propagation of the test
functions up to the volume conductor’s boundary implicitly encodes the information
of the forward model in more complex configurations. Consequently, the general-
ized samples also take into account the presence of the non-spherical medium. The
localization method, presented briefly in section 2.3, remains identical.

5. A simulation study.

5.1. Spherical head model with multiple layers. A common head model in
EEG applications is the 3-sphere conductivity model [4, 34, 38] depicted in Fig. 1.
Each compartment Ω1, Ω2 and Ω3, with their respective conductivities σ1, σ2 and
σ3, represents a specific tissue class. In the case of the 3-sphere model the com-
partments represent the brain tissue, skull and scalp, respectively. It is generally
accepted that the brain and scalp tissue have a comparable conductivity (σ1 = σ3),
whereas the skull has a much lower conductivity (e.g., σ1

σ2
= 80). Such a com-

partment with low conductivity attenuates and smooths the generated boundary
potential V

∣∣
∂Ω

. Figure 2 demonstrates this attenuation and blurring due to the layer
Ω2 with low conductivity. For the remaining of this paper, we use the 3-sphere con-
ductivity model with r1 = 0.86, r2 = 0.92, r3 = 1 and σ1 = 1, σ2 = 0.0125, σ3 = 1
as in the commonly used SMAC head model [34].
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(a)

(b)

Figure 2. (a) V
∣∣
∂Ω

generated by a source distribution ρ in a ho-

mogeneous (σ = 1) sphere. (b) V
∣∣
∂Ω3

generated by the same source

distribution in a 3-sphere conductivity model. The different com-
partments represent the brain tissue (radius r1 = 0.86 and con-
ductivity σ1 = 1), the skull (r2 = 0.92 and σ2 = 0.0125), and the
scalp (r3 = 1 and σ3 = 1). The source distribution contains two
dipoles with positions x1 = [0.1 0.5 0.6]T, x2 = [−0.3 0.4 0.6]T,
and moments p1 = x1

||x1|| and p2 = x2

||x2|| .

5.2. Propagation of analytic sensors. We propagate the analytic sensor ψan in
Ω1 through the boundaries ∂Ω1 and ∂Ω2 of the compartments Ω1 and Ω2, respec-
tively, taking into account the conductivity profile. Appendices A and B include
the detailed derivation and lead to the closed-form expression of ψ at the outer
boundary that can then be used to compute the generalized measures. In Fig. 3,
we show a vector-field representation of the analytic sensor for the homogeneous
and the multi-layer spherical model. On this example, we observe that the essential
effect of the conductivity change is to increase the contrast between homogenous
regions, but not to modify significantly the localization pattern in the neighborhood
of the sensor location.

5.3. Localization performance. Finally, we demonstrate the importance of the
analytic sensors that take into account the conductivity profile of the conductivity
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(a)

(b)

Figure 3. (a) Vector-field representation in the (x, y)-plane of the
analytic sensor function log(1− (x+ iy)/1.1) for the homogeneous
conductivity model. (b) Vector-field representation of the same
analytic sensor, but that propagates through three layers with dif-
ferent conductivities as described in Sect. 5.1. The phase and the
amplitude of the complex-valued analytic sensor determines the
orientation and the length of the vector, respectively.

model. To that aim, we compute the potential generated by a unit dipole that is
oriented outwards and perpendicular to the spherical surface (i.e., p1 = x1

||x1|| ), at

randomly chosen locations x1. The measurements are taken at 204 electrodes of a
high-density EEG cap mapped on the 3-sphere conductivity model, as illustrated
in Fig. 5.3. We used 32 analytic sensors {ψan}n=0···31 with singularities an =
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1.1 exp(i 2π
32n). The analytic sensors use the exact radii (r1 = 0.86, r2 = 0.92) and

conductivities (σ1 = 1 and σ3 = 1) of the inner layer boundaries. We varied the
conductivity σ2 taken into account by the analytic sensors. For each variation of
σ2 we computed 〈ψan , ρ〉 and performed a localization using the annihilating-filter
approach [21]. We repeated the experiment 100 times to obtain a standard deviation
of the localization error. Note that, in order to compute the generalized measures,
we need to represent the boundary potential in a continuous way. For this, we used a
thin-plate spline interpolation [15]. Then, Matlab’s dblquad, which uses a recursive
adaptive Simpson quadrature, was used to compute the generalized measures (4).

Figure 4. Illustration of the setup that was used to perform the
simulations. The conductivity model is a 3-layer spherical model.
The red dots indicate the electrodes at the outer boundary and the
green dots the singularities an of the analytic sensors ψan .

Varying σ2 in the analytic sensors introduces a model mismatch between the
conductivity profile used to generate the boundary potential and the conductivity
profile taken into account by the analytic sensors which in turn influences the local-
ization error. Figures 5(a) and 5(b) depict the effect of a varying σ2, taken into ac-
count by the analytic sensors, on the localization error. We see that the localization
error (||xestim−x1||) is minimal if there is no model mismatch between the conduc-
tivity profile used to generate the boundary potential and the conductivity profile
taken into account by the analytic sensors. Hence, in our case, the localization error
is minimal if we construct ψan such that it accounts for σ1 = 1, σ2 = 0.0125 and
σ3 = 1.

As a side note, we would like to emphasize that the number of electrodes, N , plays
some role in the resulting localization error [27]. More specifically, it is possible to
compute theoretical lower bounds for the variance of the error on the (x, y, z) local-
ization of the dipoles—Cramér-Rao bounds. We have experimentally observed that
our algorithm reaches these bounds (see [20, Chapter 7.3]). Figures 6(a) and 6(b)
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Figure 5. Mean localization error (||xestimate−x1||) as a function
of the inexact conductivity profile σ2/σ1 taken into account by the
analytic sensors and the actual conductivity profile (= 0.0125) used
to generate the boundary potential. Furthermore, the maximum
and minimum localization error is depicted by means of error bars.
The boundary potential is generated by unit dipoles at different
distances from the center (eccentricity), ||x1||, and measured at 204
electrodes on ∂Ω3. Figure 5(b) is the enlargement of figure 5(a) for
0.008 < σ2

σ1
< 0.022.

depict these minimal errors in function of the noise level (assuming additive Gauss-
ian noise), for a 64 and a 204 electrode setup. As could be expected increasing the
number of electric potential measurements makes the localization more accurate.
Here we added noise to the generalized measures, but we observed similar behavior
when degrading the boundary measurements directly.

In some cases such a parameterization reflects the true underlying source dis-
tribution accurately, e.g., in some cases of partial epilepsy. However, often the
activations are in fact small patches of many dipoles. In such cases the proposed
model is a good approximation of the true source distribution.
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Figure 6. Lower bound on the localization error in function of
the noise level (assuming additive Gaussian noise) for N = 64 (a)
and N = 204 (b) electrodes. The noise level is measured as signal-
to-noise ratio in dB.

6. Conclusion. We proposed an extension of the sensing principle to account for a
multi-layer spherical conductivity model. In order to construct the desired analytic
sensors, we solved Poisson’s equation, div (σ∇ψ) = 0, with σ radially piecewise
constant. We have shown that, in the case of a N -sphere conductivity model, we
can propagate ψ analytically.

We should mention that the proposed method does not provide the final solu-
tion to EEG/MEG source localization. Indeed, our hypotheses (piecewise constant
spherical conductivity, point-source model) are grossly violated in any practical set-
ting. Yet, we expect our approach to be a reasonably acceptable, and hopefully
useful, low-dimensional approximation (i.e., for few significant dipoles) of the more
complex physiological situation, in particular when the activation loci are clustered.
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Appendix A. Propagation through ∂Ω1. Consider the functions ϕ1 and Φ1

which are defined from the center up to the boundary ∂Ω1 of the 3-sphere conduc-
tivity model S (depicted in Fig. 1):

ϕ1(ζ) = log(1− ζ/a),

Φ1(
ζ

r2
) = 0,

with a /∈ S. Next, we define the functions f1 and g1 as stated in equations (17)
and (18):

f1(ζ) = log(1− ζ/a),

g1(ζ) =
σ1

σ2

ζ

ζ − a
.

In order to propagate Φ1 trough the boundary Ω1, which yield Φ2, we need to solve
the ODE (15) for j = 1:

2ζ

r3
1

Φ′2

(
ζ

r2
1

)
+

1

r1
Φ2

(
ζ

r2
1

)
= −g1(ζ) + ζf ′1(ζ). (23)

Since Φ2 is analytic, we can write:

Φ2

(
ζ

r2
1

)
=
∑
k≥0

ck

(
ζ

r2
1

)k
. (24)

For the rhs of the ODE (23), we have:

−g1(ζ) + ζf ′1(ζ) =

(
1− σ1

σ2

)
ζ

ζ − a
,

=

(
σ1

σ2
− 1

)∑
k≥0

(
ζ

a

)k+1

.
(25)

If we substitute the expressions (24) and (25) in the ODE (23), then we obtain:∑
k≥0

ck
2k + 1

r2k+1
1

ζk =

(
σ1

σ2
− 1

)∑
k≥0

(
ζ

a

)k+1

,

from which we infer the coefficients ck:

c0 = 0,

ck =

(
σ1

σ2
− 1

)
r2k+1
1

(2k + 1)ak
, for k ≥ 1.

This yields the following expression for Φ2:

Φ2

(
ζ

r2

)
=
(σ1

σ2
− 1
)∑
k≥1

r2k+1
1

(2k + 1)ak

(
ζ

r2

)k
.
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If we set j = 1 in equation (16), then we obtain an expression for ϕ2:

ϕ2(ζ) = f1(ζ)− 1

r1
Φ2

(
ζ

r2
1

)
,

= log(1− ζ/a)−
(
σ1

σ2 − 1
)∑

k≥1

ζk

(2k + 1)ak
.

Appendix B. Propagation through ∂Ω2. Consider the functions ϕ2 and Φ2 (as
constructed in the previous appendix) which are defined from the center up to the
boundary ∂Ω2 of the 3-sphere conductivity model S (depicted in Fig. 1):

ϕ2(ζ) = log(1− ζ/a)−
(
σ1

σ2 − 1
)∑

k≥1

ζk

(2k + 1)ak

Φ2

(
ζ
r2

)
=

(
σ1

σ2 − 1
)∑

k≥1

r2k+1
1

(2k + 1)ak

(
ζ

r2

)k
,

with a /∈ S. Next, we define the functions f2 and g2 as stated in equations (17)
and (18):

f2(ζ) = log(1− ζ/a)−
(
σ0

σ1
− 1

)∑
k≥1

(
1− r2k+1

1

r2k+1
2

)
1

(2k + 1)ak
ζk

g2(ζ) = −σ2

σ3

∑
k≥1

(
1

ak
+

(
σ1

σ2
− 1

)
k

(2k + 1)ak
+

(
σ1

σ2
− 1

)
(k + 1)r2k+1

1

(2k + 1)akr2k+1
2

)
ζk

In order to propagate Φ2 trough the boundary Ω2, which yield Φ3, we need to solve
the ODE (15) for j = 2:

2ζ

r3
2

Φ′3

(
ζ

r2
2

)
+

1

r2
Φ3

(
ζ

r2
2

)
= −g2(ζ) + ζf ′2(ζ). (26)

Since Φ3 is analytic, we can write:

Φ3

(
ζ

r2
2

)
=
∑
k≥0

ck

(
ζ

r2
2

)k
. (27)

For the rhs of the ODE (26), we have:

−g2(ζ) + ζf ′2(ζ) =
(
σ2

σ3
− 1
)∑

k≥1

ζk

ak
+(

σ1

σ2
− 1
)(

σ2

σ3
− 1
)∑

k≥1

k

2k + 1

(
ζ

a

)k
+

(
σ1

σ2
− 1
)∑

k≥1

(
σ2

σ3
(k + 1) + k

)
r2k+1
1

(2k + 1)r2k+1
2

(
ζ

a

)k
.

(28)

If we substitute the expressions (27) and (28) in the ODE (26), then we obtain:∑
k≥0 ck

2k + 1

r2k+1
2

ζk =
(
σ2

σ3
− 1
)∑

k≥1
ζk

ak
+(

σ1

σ2
− 1
)(

σ2

σ3
− 1
)∑

k≥1
k

2k+1

(
ζ
a

)k
+(

σ1

σ2
− 1
)∑

k≥1

(
σ2

σ3
(k + 1) + k

)
r2k+1
1

(2k + 1)r2k+1
2

(
ζ

a

)k
,
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from which we infer the coefficients ck:

c0 = 0,

ck =

(
σ2

σ3
− 1

)
r2k+1
2

(2k + 1)ak
+

(
σ1

σ2
− 1

)(
σ2

σ3
− 1

)
kr2k+1

2

(2k + 1)2ak
+(

σ1

σ2
− 1

) (σ2

σ3
(k + 1) + k

)
r2k+1
1

(2k + 1)2ak
, for k ≥ 1.

This yields the following expression for Φ3:

Φ3

(
ζ
r2

)
=

(
σ2

σ3
− 1
)∑
k≥1

r2k+1
2

(2k + 1)ak

(
ζ

r2

)k
+

(
σ1

σ2
− 1
)(

σ2

σ3
− 1
)∑
k≥1

kr2k+1
2

(2k + 1)2ak

(
ζ

r2

)k
+

(
σ1

σ2
− 1
)∑
k≥1

(
σ2

σ3
(k + 1) + k

)
r2k+1
1

(2k + 1)2ak

(
ζ

r2

)k
If we set j = 2 in equation (16), then we obtain an expression for ϕ3:

ϕ3(ζ) = f2(ζ)− 1

r2
Φ3

(
ζ

r2
2

)
,

= log(1− ζ/a)−
(
σ1

σ2
− 1
)∑
k≥1

(
1−

(
r1

r2

)2k+1
)

ζk

(2k + 1)ak
−(

σ2

σ3
− 1
)∑
k≥1

ζk

(2k + 1)ak
−
(
σ1

σ2
− 1

)(
σ2

σ3
− 1

)∑
k≥1

kζk

(2k + 1)2ak
−

(
σ1

σ2
− 1
)∑
k≥1

(
σ2

σ3
(k + 1) + k

)
r2k+1
1

(2k + 1)2akr2k+1
2

ζk,

which yields an expression for ψa(ζ, r) = ϕ3(ζ) +
1

r
Φ3

(
ζ

r2

)
.

REFERENCES

[1] S. Andrieux, T. N. Baranger, and A. Ben Abda. Solving Cauchy problems by minimizing an
energy-like functional. Inverse Problems, 22(1):115–133, 2006.

[2] S. Andrieux and A. Ben Abda. The reciprocity gap: A general concept for flaws identification

problems. Mechanical Research Communications, 20(5):415–420, 1993.
[3] S. Andrieux, A. Ben Abda, and J. Mohamed. On the inverse emergent plane crack problem.

Mathematical Methods in the Applied Sciences, 21(10):895–906, 1998.

[4] J. P. Ary, S. A. Klein, and D. H. Fender. Location of sources of evoked scalp potentials:
Corrections for skull and scalp thicknesses. IEEE Transactions on Biomedical Engineering,

BME-28(6):447–452, 1981.

[5] K. A. Awada, D. R. Jackson, S. B. Baumann, B. Stephen, J. T. Williams, D. R. Wilton,
P. Fink, and B. Prasky. Effect of conductivity uncertainties and modeling errors on EEG

source localization using a 2-D model. IEEE Transactions on Biomedical Engineering,

45(9):1135–1145, 1998.
[6] S. Baillet, J. C. Mosher, and R. M. Leahy. Electromagnetic brain mapping. IEEE Signal

Processing Magazine, 18(6):14–30, 2001.
[7] L. Baratchart, A. Ben Abda, F. Ben Hassen, and J. Leblond. Recovery of pointwise sources

or small inclusions in 2D domains and rational approximation. Inverse problems, 21:51–74,

2005.



ANALYTIC SENSING FOR MULTI-LAYER SPHERICAL MODELS 19

[8] L. Baratchart, J. Leblond, and J. P. Marmorat. Inverse sources problem in a 3D ball from best
meromorphic approximation on 2D slices. Electronic Transactions on Numerical Analysis,

25:41–53, 2006.

[9] G. R. Barnes and A. Hillebrand. Statistical flattening of MEG beamformer images. Human
Brain Mapping, 18:1–12, 2003.

[10] G. Birot, L. Albera, F. Wendling, and I. Merlet. Localisation of extended brain sources from
EEG/MEG: the ExSo-MUSIC approach. NeuroImage, 2011.

[11] T. Blu, P.-L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulot. Sparse sampling of signal

innovations. IEEE Signal Processing Magazine, 25(2):31–40, 2008.
[12] M. Clerc and J. Kybic. Cortical mapping by Laplace-Cauchy transmission using a boundary

element method. Inverse Problems, 23(6):2589–2601, 2007.

[13] B. N. Cuffin. Effects of head shape on EEG’s and MEG’s. IEEE Transactions On Biomedical
Engineering, 37(1):44–52, 1990.

[14] A. El Badia and T. Ha-Duong. An inverse source problem in potential analysis. Inverse

Problems, 16(3):651–663, 2000.
[15] G. E. Fasshauerand. Mathematical Methods For Curves And Surfaces II. Vanderbilt Univer-

sity Press, 1998.

[16] D. B. Geselowitz. On bioelectric potentials in an inhomogeneous volume conductor. Biophys-
ical Journal, 7(1):1–11, 1967.

[17] D. Gutirrez and A. Nehorai. Estimating brain conductivities and dipole source signals with
EEG arrays. IEEE Transactions On Biomedical Engineering, 51(12):2113–2122, 2004.
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